Calcium release and influx colocalize to the endoplasmic reticulum

نویسندگان

  • Marisa Jaconi
  • Jason Pyle
  • Ryan Bortolon
  • Joyce Ou
  • David Clapham
چکیده

Intracellular Ca2+ is released from intracellular stores in the endoplasmic reticulum (ER) in response to the second messenger inositol (1,4,5) trisphosphate (InsP3) [1,2]. Then, a poorly understood cellular mechanism, termed capacitative Ca2+ entry, is activated [3,4]; this permits Ca2+ to enter cells through Ca(2+)-selective Ca(2+)-release-activated ion channels [5,6] as well as through less selective store-operated channels [7]. The level of stored Ca2+ is sensed by Ca(2+)-permeant channels in the plasma membrane, but the identity of these channels, and the link between them and Ca2+ stores, remain unknown. It has been argued that either a diffusible second messenger (Ca2+ influx factor; CIF) [8] or a physical link [9,10] connects the ER Ca(2+)-release channel and store-operated channels; strong evidence for either mechanism is lacking, however [7,10]. Petersen and Berridge [11] showed that activation of the lysophosphatidic acid receptor in a restricted region of the oocyte membrane results in stimulation of Ca2+ influx only in that region, and concluded that a diffusible messenger was unlikely. To investigate the relationship between ER stores and Ca2+ influx, we used centrifugation to redistribute into specific layers the organelles inside intact Xenopus laevis oocytes, and used laser scanning confocal microscopy with the two-photon technique to 'uncage' InsP3 while recording intracellular Ca2+ concentration. Ca2+ release was localized to the stratified ER layer and Ca2+ entry to regions of the membrane directly adjacent to this layer. We conclude that Ca2+ depletion and entry colocalize to the ER and that the mechanism linking Ca2+ stores to Ca2+ entry is similarly locally constrained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-induced release of calcium regulates differentiation of cultured spinal neurons.

Voltage-dependent calcium influx has been shown to regulate the differentiation of cultured amphibian spinal neurons. We have examined the transient elevation of intracellular calcium induced by depolarization, using calcium indicators and confocal microscopy with high temporal and spatial resolution. Rapid calcium elevations in both the nucleus and the cytosol are primarily due to calcium-depe...

متن کامل

Calcium-induced calcium release

How are calcium levels increased within cells? Increases in intracellular calcium arise through either calcium influx across the plasma membrane or release from intracellular calcium stores, which is usually either the endoplasmic reticulum (ER) or, in muscle, the sarcoplasmic reticulum (SR). Release of calcium from the ER/SR is activated by a variety of second messengers, such as inositol 1,4,...

متن کامل

Calcium, Orai1 and Epidermal Proliferation

Ca(2+) influx controls essential epidermal functions, including proliferation, differentiation, cell migration, itch, and barrier homeostasis. The Orai1 ion channel allows capacitive Ca(2+) influx after Ca(2+) release from the endoplasmic reticulum, and it has now been shown to modulate epidermal atrophy. These findings reveal new interactions among various Ca(2+) signaling pathways and uncover...

متن کامل

Activation of the endoplasmic reticulum calcium sensor STIM1 and store-operated calcium entry by rotavirus requires NSP4 viroporin activity.

Rotavirus nonstructural protein 4 (NSP4) induces dramatic changes in cellular calcium homeostasis. These include increased endoplasmic reticulum (ER) permeability, resulting in decreased ER calcium stores and activation of plasma membrane (PM) calcium influx channels, ultimately causing a 2- to 4-fold elevation in cytoplasmic calcium. Elevated cytoplasmic calcium is absolutely required for viru...

متن کامل

Calcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex

Entorhinal cortex (EC) is one of the first Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’sdisease (AD). The pathology propagates to neighboring cerebral regions through a prion-likemechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmicreticulum (ER) stress. This study was designed to examine hippocampal ER stre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1997